Black Ice Prediction Model for Road Pavement Using Weather Forecast Data and GIS Database

Author:

Phan Tam Minh1ORCID,Jang Min-Seok2ORCID,Park Dae-Wook1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Kunsan National University, Gunsan City, Rep. of Korea

2. Department of Computer Information Engineering, Kunsan National University, Gunsan City, Rep. of Korea

Abstract

Black ice is a thin coating of ice on the road surface, which strongly reduces friction at the tire-road surface, resulting in dangerous driving when it happens. An appropriate diagnostic of black ice could prevent traffic accidents as well as provide timely notice to drivers. Therefore, this study aims at developing a black ice prediction model to diagnose the probability of black ice formation. Several combinations that can form road ice have been considered, including freezing rain, hoar frost, freezing of wet roads. In addition, black ice risky index (BRI) has been computed to reflect the probability of black ice formation. To acquire a fast prediction and high accuracy, the existing Geographical Information System (GIS) database and meteorological data have been utilized. GIS database includes road geometry and location of automatic weather stations, while the meteoritical data consists of air temperature, wind speed, humidity, cloud cover. The model has been developed based on the Python programming language. A 5-km road condition was observed from 1 December to 31 December 2021 to determine the model accuracy. Based on the results from the prediction model, black ice formation has been verified when the BRI is higher than 0.8. The model may be useful to develop black ice diagnostic program.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3