Abstract
In recent years, the involvement of synthetic strongly labeled data, weakly labeled data, and unlabeled data has drawn much research attention in semi-supervised acoustic event detection (SAED). The classic self-training method carries out predictions for unlabeled data and then selects predictions with high probabilities as pseudo-labels for retraining. Such models have shown its effectiveness in SAED. However, probabilities are poorly calibrated confidence estimates, and samples with low probabilities are ignored. Hence, we introduce a confidence-based semi-supervised Acoustic event detection (C-SAED) framework. The C-SAED method learns confidence deliberately and retrains all data distinctly by applying confidence as weights. Additionally, we apply a power pooling function whose coefficient can be trained automatically and use weakly labeled data more efficiently. The experimental results demonstrate that the generated confidence is proportional to the accuracy of the predictions. Our C-SAED framework achieves a relative error rate reduction of 34% in contrast to the baseline model.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science