Affiliation:
1. Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy
2. University of Verona, Verona, Italy
3. University of Genova, Genova, Italy
4. Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia - University of Verona, Genova, Italy
Abstract
Despite surveillance systems becoming increasingly ubiquitous in our living environment, automated surveillance, currently based on video sensory modality and machine intelligence, lacks most of the time the robustness and reliability required in several real applications. To tackle this issue, audio sensory devices have been incorporated, both alone or in combination with video, giving birth in the past decade, to a considerable amount of research. In this article, audio-based automated surveillance methods are organized into a comprehensive survey: A general taxonomy, inspired by the more widespread video surveillance field, is proposed to systematically describe the methods covering background subtraction, event classification, object tracking, and situation analysis. For each of these tasks, all the significant works are reviewed, detailing their pros and cons and the context for which they have been proposed. Moreover, a specific section is devoted to audio features, discussing their expressiveness and their employment in the above-described tasks. Differing from other surveys on audio processing and analysis, the present one is specifically targeted to automated surveillance, highlighting the target applications of each described method and providing the reader with a systematic and schematic view useful for retrieving the most suited algorithms for each specific requirement.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
148 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献