Audio Surveillance

Author:

Crocco Marco1,Cristani Marco2,Trucco Andrea3,Murino Vittorio4

Affiliation:

1. Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy

2. University of Verona, Verona, Italy

3. University of Genova, Genova, Italy

4. Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia - University of Verona, Genova, Italy

Abstract

Despite surveillance systems becoming increasingly ubiquitous in our living environment, automated surveillance, currently based on video sensory modality and machine intelligence, lacks most of the time the robustness and reliability required in several real applications. To tackle this issue, audio sensory devices have been incorporated, both alone or in combination with video, giving birth in the past decade, to a considerable amount of research. In this article, audio-based automated surveillance methods are organized into a comprehensive survey: A general taxonomy, inspired by the more widespread video surveillance field, is proposed to systematically describe the methods covering background subtraction, event classification, object tracking, and situation analysis. For each of these tasks, all the significant works are reviewed, detailing their pros and cons and the context for which they have been proposed. Moreover, a specific section is devoted to audio features, discussing their expressiveness and their employment in the above-described tasks. Differing from other surveys on audio processing and analysis, the present one is specifically targeted to automated surveillance, highlighting the target applications of each described method and providing the reader with a systematic and schematic view useful for retrieving the most suited algorithms for each specific requirement.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3