Numerical and Experimental Study on Suppression Effect of Acoustic Black Hole on Vibration Transmission of Refrigerator Compressor

Author:

Du XiaofeiORCID,Fu QidiORCID,Zhang Jianrun,Zong Chaoyong

Abstract

The acoustic black hole (ABH) structures have the potential to achieve structural vibration suppression and noise reduction through the effect of the ABH on the concentration and manipulation of flexural waves. In this paper, a new solution is proposed to embed 2-D ABHs on the support plate to suppress the transmission of compressor vibration to the refrigerator body. The vibration and acoustic measurement experiment of the compressor, the support plate and the refrigerator body, and the coherence analysis of the vibration signals and acoustic signal are carried out to determine the influence of the compressor vibration on the vibration of the refrigerator body and the radiation sound of the back wall. The concentration and manipulation effects of 2-D ABH on flexural waves are verified by numerical simulation of flexural wave propagation in the time domain. FEM models of the original support plate and the damping ABH support plate are established to investigate the comprehensive effect of the 2-D ABHs and the damping layers on the vibration characteristics of the support plate through vibration modal and dynamic response analysis. Numerical simulation results show that the 2-D damping ABHs can suppress the vibrations generated by the compressor at specific frequencies in the middle and high-frequency bands from being transmitted to the refrigerator body through the support plate.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3