Abstract
Environmental Sound Recognition has become a relevant application for smart cities. Such an application, however, demands the use of trained machine learning classifiers in order to categorize a limited set of audio categories. Although classical machine learning solutions have been proposed in the past, most of the latest solutions that have been proposed toward automated and accurate sound classification are based on a deep learning approach. Deep learning models tend to be large, which can be problematic when considering that sound classifiers often have to be embedded in resource constrained devices. In this paper, a classical machine learning based classifier called MosAIc, and a lighter Convolutional Neural Network model for environmental sound recognition, are proposed to directly compete in terms of accuracy with the latest deep learning solutions. Both approaches are evaluated in an embedded system in order to identify the key parameters when placing such applications on constrained devices. The experimental results show that classical machine learning classifiers can be combined to achieve similar results to deep learning models, and even outperform them in accuracy. The cost, however, is a larger classification time.
Funder
Agentschap Innoveren en Ondernemen
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献