A Digital Signal Processor Based Acoustic Sensor for Outdoor Noise Monitoring in Smart Cities

Author:

López Juan ManuelORCID,Alonso Jesús,Asensio CésarORCID,Pavón IgnacioORCID,Gascó LuisORCID,de Arcas Guillermo

Abstract

Presently, large cities have significant problems with noise pollution due to human activity. Transportation, economic activities, and leisure activities have an important impact on noise pollution. Acoustic noise monitoring must be done with equipment of high quality. Thus, long-term noise monitoring is a high-cost activity for administrations. For this reason, new alternative technological solutions are being used to reduce the costs of measurement instruments. This article presents a design for a versatile electronic device to measure outdoor noise. This device has been designed according to the technical standards for this type of instrument, which impose strict requirements on both the design and the quality of the device’s measurements. This instrument has been designed under the original equipment manufacturer (OEM) concept, so the microphone–electronics set can be used as a sensor that can be connected to any microprocessor-based device, and therefore can be easily attached to a monitoring network. To validate the instrument’s design, the device has been tested following the regulations of the calibration laboratories for sound level meters (SLM). These tests allowed us to evaluate the behavior of the electronics and the microphone, obtaining different results for these two elements. The results show that the electronics and algorithms implemented fully fit within the requirements of type 1 noise measurement instruments. However, the use of an electret microphone reduces the technical features of the designed instrument, which can only fully fit the requirements of type 2 noise measurement instruments. This situation shows that the microphone is a key element in this kind of instrument and an important element in the overall price. To test the instrument’s quality and show how it can be used for monitoring noise in smart wireless acoustic sensor networks, the designed equipment was connected to a commercial microprocessor board and inserted into the infrastructure of an existing outdoor monitoring network. This allowed us to deploy a low-cost sub-network in the city of Málaga (Spain) to analyze the noise of conflict areas due to high levels of leisure noise. The results obtained with this equipment are also shown. It has been verified that this equipment meets the similar requirements to those obtained for type 2 instruments for measuring outdoor noise. The designed equipment is a two-channel instrument, that simultaneously measures, in real time, 86 sound noise parameters for each channel, such as the equivalent continuous sound level (Leq) (with Z, C, and A frequency weighting), the peak level (with Z, C, and A frequency weighting), the maximum and minimum levels (with Z, C, and A frequency weighting), and the impulse, fast, and slow time weighting; seven percentiles (1%, 5%, 10%, 50%, 90%, 95%, and 99%); as well as continuous equivalent sound pressure levels in the one-third octave and octave frequency bands.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Statistical Papers—United Nations (Ser. A), Population and Vital Statistics Report https://doi.org/10.18356/e59eddca-en

2. Environmental Topics, Environment and Health, Noise https://www.eea.europa.eu/themes/human/noise

3. Environmental Noise Guidelines for the European Region 2018,2018

4. Development of the WHO Environmental Noise Guidelines for the European Region: An Introduction

5. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 Relating to the Assessment and Management of Environmental Noise,2002

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3