Abstract
This study investigated the applicability of algae (Hizikia fusiformis, Green gracilaria, and Codium fragile) for removing heavy metals (Cd2+, Cu2+, Ni2+, and Pb2+) from aqueous solutions. Among the algae, H. fusiformis was chosen as a bioadsorbent and modified with NaOH and HCl. The results showed that the biosorption capacity of H. fusiformis improved significantly after treatment with NaOH; however, H. fusiformis modified with HCl did not achieve the expected value. The NaOH treatment enhanced the biosorption of metals on the treated H. fusiformis because of the hydrolysis reaction producing carboxylic (–COOH) and hydroxyl groups (–OH). The kinetics for Cd2+, Cu2+, Ni2+, and Pb2+ biosorption well fitted to pseudo-first-order, pseudo-second-order, and Elovich models, with R2 of >0.994. The Freundlich model provided a good fit for the equilibrium biosorption of Cd2+, Cu2+, and Ni2+ by both algae and the Langmuir model for Pb2+. The maximum biosorption of metals was in the order Pb2+ >> Cu2+ ≈ Ni2+ > Cd2+, with qmax of 167.73, 45.09, 44.38, and 42.08 mg/g, respectively. With an increase in the solution pH, metal biosorption was enhanced, and considerable enhancement was observed in the pH range of 2–4. Thus, H. fusiformis is expected to be considered a superior candidate for metal biosorption.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference68 articles.
1. Adsorption of heavy metals: A review;Lakherwal;Int. J. Environ. Res. Dev.,2014
2. Biosorption of Heavy Metal Lead from Aqueous Solution by Non-living Biomass of Sargassum myriocystum;Jebasweetly;Int. J. Appl. Innov. Eng. Manag.,2014
3. Microalgae – A promising tool for heavy metal remediation
4. Assessment of heavy metals pollution in sediments from reservoirs of the Olt river as tool for environmental risk management;Iordache;Rev. Chim.,2019
5. Progress in batch biosorption of heavy metals onto algae
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献