Microstructural Characterisation of Adsorbent Ash with Potentially Toxic Elements in a Mortar

Author:

Naser Heba1ORCID,Al-Labadi Ibrahim G.1,Dorkota Andrea1,Czinkota Imre1,Horváth Márk1ORCID

Affiliation:

1. Institute of Environmental Science , Hungarian University of Agriculture and Life Sciences ( MATE), Páter Károly Street , , Hungary

Abstract

Abstract Potentially toxic elements (PTEs) in ecosystems and construction materials pose a significant environmental concern. Various qualitative and quantitative techniques are employed to analyse PTEs in a sample. This study explores an innovative approach that incorporates PTE (Cd, Zn, Cu, Pb) adsorbent ash, specifically adsorbed paper ash (APA) and adsorbed mulch ash (AMA), into mortar composites. This approach offers several advantages, including reduced reliance on waste landfills, energy recovery during the ashing process, and immobilisation of PTEs within a cement matrix. This study evaluated the elemental and microstructural characteristics of mortar composites incorporated with adsorbed ash by using a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS), followed by analysing the elemental maps with ImageJ software version 1.8.0. Parallel experiments were conducted to measure the leaching of mortar composites. The total elemental content of PTEs in the leachate solutions was quantified using an inductively coupled plasma-optical emission spectrometer (ICP-OES). The differences in adsorption capacity and leaching of PTEs observed between paper and mulch can be ascribed to their distinct affinities, which are influenced by the recorded pH levels. The examined elemental mapping revealed a consistent distribution across the APA and AMA mortar matrix structures, with greater intensity than the blank mortar sample. Furthermore, there is a reverse correlation between the order of percentage area coverage of the immobilised elements and the order of leaching, indicating that the PTEs were successfully immobilised. The percentage of PTE area coverage within AMA mortar composites followed the subsequent order: Pb > Cd > Zn > Cu, constituting 32.1 %, 28.6 %, 13.8 %, and 12.4 %, respectively. This order was also observed in the blank mortar composite, with percentages of 12.5 %, 8.6 %, 4.5 %, and 4.2 %, respectively. In the case of the APA mortar composite, the percentage of area coverage followed a different sequence: Cd > Pb > Zn > Cu, representing 27.7 %, 26.6 %, 14.5 %, and 14.1 %, respectively. The results also demonstrated notable improvements in the microstructure of the mortar when AMA and APA are incorporated, which is attributed to the ash additives’ micro-filling capacity. The findings contribute to advancing environmentally sound construction practices, with implications for sustainable waste management and pollution mitigation.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3