Influence of Temperature Variation on the Vibrational Characteristics of Fused Silica Cylindrical Resonators for Coriolis Vibratory Gyroscopes

Author:

Xiao Pengbo,Qiu Zhinan,Luo Yiming,Pan Yao,Qu Tianliang,Yang Kaiyong,Luo Hui,Qin Shiqiao

Abstract

The fused silica cylindrical resonator is a type of axisymmetric resonator that can be used for Coriolis vibratory gyroscopes. Although the resonant frequency, frequency mismatch, and Q factor are natural properties of the resonator, they can change with temperature. Therefore, the temperature drift severely limits the detection accuracy and bias stability of the gyroscope. In this paper, the influence of temperature variation on the vibrational characteristics of fused silica cylindrical resonators was investigated. Experiments were performed on a fused silica cylindrical resonator coated with Cr/Au films. It was shown that at the temperature range from 253.15 K to 353.15 K, the resonant frequency linearly increased with temperature, the frequency mismatch remained unchanged, and the Q factor gradually increased till about 333.15 K, when it began to decrease. Meanwhile, the change of thermoelastic damping with temperature may dominate the variation of Q factor at the temperature range from 253.15 K to 353.15 K. This phenomenon was theoretically analyzed and the variation trends of results were consistent with the theoretical analysis. This study indicates that, for the fused silica cylindrical resonator, to discover the influence of temperature variation on the resonant frequency, frequency mismatch, and Q factor, there are certain rules to follow and repeat. The relationship between temperature and frequency can be established, which provides the feasibility of using self-calibration based on temperature characteristics of the resonator for temperature drift compensations. Additionally, there is an optimum temperature that may improve the performance of the Coriolis vibratory gyroscope with the fused silica cylindrical resonator.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3