High sensitivity rate-integrating hemispherical resonator gyroscope with dead area compensation for damping asymmetry

Author:

Zhao Wanliang,Yang Hao,Liu Fucheng,Su Yan,Li Chong

Abstract

AbstractThe rate-integrating gyroscope (RIG) operation is considered as the next generation architecture for hemispherical resonator gyroscopes (HRGs) with advantages of direct angle measurement and unlimited dynamic range. However, this RIG operation requires high symmetry for the HRG device and the damping mismatch of the two gyroscopic modes will result in a dead area problem. This work analyzes the error mechanism of the damping asymmetry induced dead area and proposed a novel virtual procession compensation method for HRG RIG. The simulation proves the existence of the dead area as the theory predicted. More importantly, the experimental HRG RIG platform with the proposed compensation method can significantly expand the dynamic range with accurate angle measurement and overcome the problem of dead area. The earth rotation is accurate measured which is the first time that captured by a RIG scheme as a state-of-the-art result.

Funder

Program of Shanghai Academic/Technology Research Leader

Fundamental Research Funds for the Central Universities of Ocean University of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3