Growth and Dispersion Control of SnO2 Nanocrystals Employing an Amino Acid Ester Hydrochloride in Solution Synthesis: Microstructures and Photovoltaic Applications

Author:

Hattori Nagisa1,Vafaei Saeid2,Narita Ryoki1,Nagaya Naohide1,Yoshida Norimitsu1,Sugiura Takashi1,Manseki Kazuhiro1ORCID

Affiliation:

1. The Graduate School of Natural Science and Technology, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan

2. Mechanical Engineering Department, Bradley University, 1501 West Bradley Avenue, Peoria, IL 61625, USA

Abstract

Tin oxide (SnO2) is a technologically important semiconductor with versatile applications. In particular, attention is being paid to nanostructured SnO2 materials for use as a part of the constituents in perovskite solar cells (PSCs), an emerging renewable energy technology. This is mainly because SnO2 has high electron mobility, making it favorable for use in the electron transport layer (ETL) in these devices, in which SnO2 thin films play a role in extracting electrons from the adjacent light-absorber, i.e., lead halide perovskite compounds. Investigation of SnO2 solution synthesis under diverse reaction conditions is crucial in order to lay the foundation for the cost-effective production of PSCs. This research focuses on the facile catalyst-free synthesis of single-nanometer-scale SnO2 nanocrystals employing an aromatic organic ligand (as the structure-directing agent) and Sn(IV) salt in an aqueous solution. Most notably, the use of an aromatic amino acid ester hydrochloride salt—i.e., phenylalanine methyl ester hydrochloride (denoted as L hereafter)—allowed us to obtain an aqueous precursor solution containing a higher concentration of ligand L, in addition to facilitating the growth of SnO2 nanoparticles as small as 3 nm with a narrow size distribution, which were analyzed by means of high-resolution transmission electron microscopy (HR-TEM). Moreover, the nanoparticles were proved to be crystallized and uniformly dispersed in the reaction mixture. The environmentally benign, ethanol-based SnO2 nanofluids stabilized with the capping agent L for the Sn(IV) ions were also successfully obtained and spin-coated to produce a SnO2 nanoparticle film to serve as an ETL for PSCs. Several SnO2 ETLs that were created by varying the temperature of nanoparticle synthesis were examined to gain insight into the performance of PSCs. It is thought that reaction conditions that utilize high concentrations of ligand L to control the growth and dispersion of SnO2 nanoparticles could serve as useful criteria for designing SnO2 ETLs, since hydrochloride salt L can offer significant potential as a functional compound by controlling the microstructures of individual SnO2 nanoparticles and the self-assembly process to form nanostructured SnO2 thin films.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3