Evaluation of Machine Learning Algorithms for Malware Detection

Author:

Akhtar Muhammad ShoaibORCID,Feng TaoORCID

Abstract

This research study mainly focused on the dynamic malware detection. Malware progressively changes, leading to the use of dynamic malware detection techniques in this research study. Each day brings a new influx of malicious software programmes that pose a threat to online safety by exploiting vulnerabilities in the Internet. The proliferation of harmful software has rendered manual heuristic examination of malware analysis ineffective. Automatic behaviour-based malware detection using machine learning algorithms is thus considered a game-changing innovation. Threats are automatically evaluated based on their behaviours in a simulated environment, and reports are created. These records are converted into sparse vector models for use in further machine learning efforts. Classifiers used to synthesise the results of this study included kNN, DT, RF, AdaBoost, SGD, extra trees and the Gaussian NB classifier. After reviewing the test and experimental data for all five classifiers, we found that the RF, SGD, extra trees and Gaussian NB Classifier all achieved a 100% accuracy in the test, as well as a perfect precision (1.00), a good recall (1.00), and a good f1-score (1.00). Therefore, it is reasonable to assume that the proof-of-concept employing autonomous behaviour-based malware analysis and machine learning methodologies might identify malware effectively and rapidly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3