Deep Learning-Based Framework for the Detection of Cyberattack Using Feature Engineering

Author:

Akhtar Muhammad Shoaib1ORCID,Feng Tao1ORCID

Affiliation:

1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Digital systems are changing to security systems in contemporary days. It is time for the digital system to have sufficient security to defend against threats and attacks. The intrusion detection system can identify an anomaly from an external or internal source in the network system. Many kinds of threats are present, that is, active and passive. These dangers could lead to anomalies in the system by which data can be attacked and taken by attackers from the beginning to the destination. Machine learning nowadays is a developing topic; its applications are wide. We can forecast the future through machine learning and classify the right class. In this paper, we employed the new binary and multiclass classification model of Convolutional Neural Networks (CNNs) to identify the anomaly of the network system. In this respect, we used the NSLKDD dataset. Our model uses a Convolutional Neural Network (CNN) to conduct binary and multiclass classification. In both datasets, we build a DL-based DoS detection model. We focus on the DoS category in the most extensively used IDS dataset, KDD. As the name implies, CNN is the most extensively used the DL model for image recognition. Adding a pooling layer to the convolution layer minimizes the size of the feature data extracted from the image while maintaining I/O and spatial information. The CNN model has shown the promising results of multiclass and binary classification in terms of validation loss of 0.0012 at 11th epochs and validation accuracy of 98% and 99%, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A sequential deep learning framework for a robust and resilient network intrusion detection system;Computers & Security;2024-09

2. A lightweight optimized intrusion detection system using machine learning for edge-based IIoT security;Telecommunication Systems;2024-07-26

3. A network intrusion detection system based on deep learning in the IoT;The Journal of Supercomputing;2024-07-13

4. Feature Engineering and Computer Vision for Cybersecurity;Advances in Information Security, Privacy, and Ethics;2024-02-23

5. From Code to Conundrum: Machine Learning's Role in Modern Malware Detection;2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC);2024-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3