Affiliation:
1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
Abstract
Digital systems are changing to security systems in contemporary days. It is time for the digital system to have sufficient security to defend against threats and attacks. The intrusion detection system can identify an anomaly from an external or internal source in the network system. Many kinds of threats are present, that is, active and passive. These dangers could lead to anomalies in the system by which data can be attacked and taken by attackers from the beginning to the destination. Machine learning nowadays is a developing topic; its applications are wide. We can forecast the future through machine learning and classify the right class. In this paper, we employed the new binary and multiclass classification model of Convolutional Neural Networks (CNNs) to identify the anomaly of the network system. In this respect, we used the NSLKDD dataset. Our model uses a Convolutional Neural Network (CNN) to conduct binary and multiclass classification. In both datasets, we build a DL-based DoS detection model. We focus on the DoS category in the most extensively used IDS dataset, KDD. As the name implies, CNN is the most extensively used the DL model for image recognition. Adding a pooling layer to the convolution layer minimizes the size of the feature data extracted from the image while maintaining I/O and spatial information. The CNN model has shown the promising results of multiclass and binary classification in terms of validation loss of 0.0012 at 11th epochs and validation accuracy of 98% and 99%, respectively.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献