A Unit Compound Structure Design: Poisson’s Ratio Is Autonomously Adjustable from Negative to Positive

Author:

Zhao Guanxiao1,Fu Tao1

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

The shape memory polymer (SMP) is a new type of smart material that can produce a shape memory effect through the stimulation of the external environment. In this article, the viscoelastic constitutive theory of the shape memory polymer and the mechanism of the bidirectional memory effect of the shape memory polymer are described. A chiral poly cellular circular concave auxetic structure based on a shape memory polymer made of epoxy resin is designed. Two structural parameters, α and β, are defined, and the change rule of Poisson’s ratio under different structural parameters is verified by ABAQUS. Then, two elastic scaffolds are designed to assist a new type of cellular structure made of a shape memory polymer to autonomously adjust bidirectional memory under the stimulation of the external temperature, and two processes of bidirectional memory are simulated using ABAQUS. Finally, when a shape memory polymer structure implements the bidirectional deformation programming process, a conclusion is drawn that changing the ratio β of oblique ligament and ring radius has a better effect than changing the angle α of oblique ligament and horizontal in achieving the autonomously adjustable bidirectional memory effect of the composite structure. In summary, through the combination of the new cell and the bidirectional deformation principle, the autonomous bidirectional deformation of the new cell is achieved. The research can be used in reconfigurable structures, tuning symmetry, and chirality. The adjusted Poisson’s ratio achieved by the stimulation of the external environment can be used in active acoustic metamaterials, deployable devices, and biomedical devices. Meanwhile, this work provides a very meaningful reference for the potential application value of metamaterials.

Funder

the Yunnan Fundamental Researc

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3