Analysis of Rock Breaking Parameters and Simulation of Mechanical Characteristics of Multi-Nozzle Jet Impact

Author:

Liu Yanbao1,He Lipeng2ORCID,Dai Linchao1,Shen Kai1,Ba Quanbin1

Affiliation:

1. National Key Laboratory of Gas Disaster Detecting, Preventing and Emergency Controlling, China Coal Technology Engineering Group Chongqing Research Institute, No. 55, Shangqiao No.3 Village, Shapingba District, Chongqing 400039, China

2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China

Abstract

With the continuous development of high-pressure water jet technology, research on the optimization of structural parameters for multi-nozzle configurations, the perforation effect of jet rotational impact rock breaking, and the impact force during rock breaking has received increasing attention. Through the development of a self-designed high-pressure water jet rotational drilling test device, rock breaking experiments were conducted on sandstone of different strengths using jet streams with different inclination angles, various combinations of nozzles, different target distances, and different rotational speeds. The parameters and structure of the multi-nozzle jet drill bit were optimized, and the impact of water jet-rock breaking effects was studied. The rationality of different inclination-angle jet streams in rock breaking was verified using the ALE-FEM coupling method. The changes in the force on the target body and the fragmentation mode during rock breaking with different inclination-angle jet streams were analyzed. The results showed that under the condition of adjustable inclination angles, a smaller inclination angle resulted in greater depth and a smaller diameter of rock breaking, while a larger inclination angle resulted in greater width and a smaller depth of rock breaking. The optimal combination of multi-nozzle jet streams was determined to be 20°, 30°, and 60°, which achieved a balance between rock breaking and borehole expansion performance. The efficiency of multi-nozzle jet rotational rock breaking decreased with increasing target distance, with the optimal range being 2 to 4 mm. The rotational speed of the multi-nozzle jet stream had a significant impact on rock-breaking efficiency. Under the same target distance conditions, as the drilling speed increased, the volume of rock breaking initially increased and then decreased, and the rate of volume attenuation increased with increasing target distance. The forms of rock breaking in multi-nozzle jet streams were not identical. Jet streams with smaller inclination angles mainly caused tensile failure through axial impact, while those with larger inclination angles primarily caused shear failure through radial impact. This study provides valuable guidance for optimizing the structural parameters of multi-nozzle jet drill bits and researching rotational rock breaking.

Funder

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3