Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output

Author:

Bhadwal Neelesh1,Ben Mrad Ridha1,Behdinan Kamran1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

Abstract

Lead-containing piezoelectric materials typically show the highest energy conversion efficiencies, but due to their toxicity they will be limited in future applications. In their bulk form, the piezoelectric properties of lead-free piezoelectric materials are significantly lower than lead-containing materials. However, the piezoelectric properties of lead-free piezoelectric materials at the nano scale can be significantly larger than the bulk scale. This review looks at the suitability of ZnO nanostructures as candidate lead-free piezoelectric materials for use in piezoelectric nanogenerators (PENGs) based on their piezoelectric properties. Of the papers reviewed, Neodymium-doped ZnO nanorods (NRs) have a comparable piezoelectric strain constant to bulk lead-based piezoelectric materials and hence are good candidates for PENGs. Piezoelectric energy harvesters typically have low power outputs and an improvement in their power density is needed. This review systematically reviews the different composite structures of ZnO PENGs to determine the effect of composite structure on power output. State-of-the-art techniques to increase the power output of PENGs are presented. Of the PENGs reviewed, the highest power output belonged to a vertically aligned ZnO nanowire (NWs) PENG (1-3 nanowire composite) with a power output of 45.87 μW/cm2 under finger tapping. Future directions of research and challenges are discussed.

Funder

National Science and Engineering Research Council (NSERC) of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3