Abstract
AbstractThe 3D printing of energy harvesters using earth-abundant and non-toxic elements promotes energy sustainability and market competitiveness. The semiconducting behavior and non-centrosymmetric wurtzite crystal structure of gallium-doped zinc oxide (GZO) films make them attractive for thermoelectric and piezoelectric nanogenerators. This study investigates the thermal, structural, mechanical, thermoelectric, and piezoelectric properties of 3D-printed GZO nanocomposite films. Thermal analysis demonstrates the stability of the nanocomposite film up to 230 °C, making it suitable for wearable energy harvesters. The crystalline structure of the nanocomposite film aligns with the hexagonal wurtzite structure of ZnO and displays a bulk-like microstructure with a uniform distribution of elements. The presence of Ga 2p, Zn 2p, O 1 s, and C 1 s core levels confirms the development of the nanocomposite film, characterized by a fine granular structure and a conductive domain compared to the neat resin film. The inclusion of GZO nanofillers tailors the stress–strain behavior of the nanocomposite film, enhancing flexibility. The 3D-printed GZO nanocomposite films demonstrate a promising thermoelectric power factor and piezoelectric power densities, along with mechanical flexibility and thermal stability. These advancements hold significant potential for wearable and hybrid energy generation technologies.
Publisher
Springer Science and Business Media LLC