Abstract
Most of the ground in Japan is soft, leading to great damage in the event of liquefaction. Various ground-improvement measures are being taken to suppress such damage. However, it is difficult to carry out ground-improvement work while checking the internal conditions of the ground during the construction. Therefore, a visible and measurable evaluation of the performance of the ground-improvement work was conducted in this study. The authors performed a simulation analysis of the relative stirred deep mixing method (RS-DMM), a kind of ground-improvement method, using a computer-aided engineering (CAE) analysis based on particle-based methods (PBMs). In the RS-DMM, the “displacement reduction type (DRT)” suppresses displacement during construction. Both the DRT and the normal type (NT) were simulated, and a visible and measurable evaluation was performed on the internal conditions during each construction, the quality of the improved body, and the displacement reduction performance. As an example of these results, it was possible to visually evaluate the discharge of surplus soil by the spiral rod attached to the stirring wing of the DRT. In addition, the authors succeeded in quantitatively showing that more surplus soil was discharged when the stirring wing of the DRT was used than when the stirring wing of the NT was used.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献