Experimental Study on Physical-Mechanical Properties of Expansive Soil Improved by Multiple Admixtures

Author:

Ma Binhui12ORCID,Cai Kai1,Zeng Xing1,Li Zhuo1,Hu Zhiyong1,Chen Qiunan12,He Chengbin1,Chen Bingchu1,Huang Xiaocheng12

Affiliation:

1. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

The treatment of expansive soil is always a difficult problem in engineering. Using coal gangue, fly ash, and other solid waste to treat expansive soil has gradually become a new way of energy saving and environmental protection. Most of the existing studies focus on using one or two kinds of admixtures to improve expansive soil, but there are few studies on improving expansive soil with multiple admixtures. In this paper, the expansion and shrinkage deformation and strength characteristics of expansive soil modified by coal gangue, fly ash, and lime are studied experimentally. Nine groups of different mixing schemes were designed through orthogonal tests, and the physical and mechanical properties of the improved expansive soil under different mixing ratios were tested. The sensitivity analysis of the test results was carried out to study the effect of each admixture on the improved expansive soil under different mixing ratios, and the optimal mix ratio under different conditions was obtained. The optimal mix ratio is 8% for coal gangue, 11% for fly ash, and 6% for lime. Further scanning electron microscopy (SEM) tests were carried out to analyze the microstructure of the improved expansive soil and explore the improvement mechanism of the multiadmixture. The results show that the optimal moisture content and the maximum dry density of the expansive soil with ash are decreased, and the properties of liquid plastic limit, free expansion rate, shear strength, and unconfined compressive strength of the expansive soil are improved obviously. Through the analysis of the comprehensive balance method, it is found that the content of lime has the greatest influence on the improvement effect of expansive soil, followed by that of coal gangue, and the least is that of fly ash. SEM structure analysis reveals that the particles of improved expansive soil are mainly aggregates, the soil structure is dense, particle agglomeration increases, and the overall structure is stronger. The research results can provide reference for the improvement of expansive soil with various admixtures and the resource utilization of coal gangue, fly ash, and other solid wastes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference33 articles.

1. Research progress on engineering geological characteristics of expansive soil;L. ting;Journal of Engineering Geology,2018

2. Analysis on the evolution and disturbance law of expansion and shrinkage cracks in expansive soil;Z. Yang;Journal of Agricultural Engineering,2019

3. Microstructural evolution test of fissure expansive soil;X. Wang;Journal of Agricultural Engineering,2016

4. Cracking regularity and influencing factors of expansive soil on slope of river course in Jihuai River Project of Yanjiang River;G. Li;Journal of Agricultural Engineering,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3