Biocontrol and Action Mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in Soybean Phytophthora Blight

Author:

Liu Dong,Li Kunyuan,Hu Jiulong,Wang Weiyan,Liu Xiao,Gao Zhimou

Abstract

With the improper application of fungicides, Phytophthora sojae begins to develop resistance to fungicides, and biological control is one of the potential ways to control it. We screened two strains of Bacillus; Bacillus amyloliquefaciens JDF3 and Bacillus subtilis RSS-1, which had an efficient inhibitory effect on P. sojae. They could inhibit mycelial growth, the germination of the cysts, and the swimming of the motile zoospores. To elucidate the response of P. sojae under the stress of B. amyloliquefaciens and B. subtilis, and the molecular mechanism of biological control, comparative transcriptome analysis was applied. Transcriptome analysis revealed that the expression gene of P. sojae showed significant changes, and a total of 1616 differentially expressed genes (DEGs) were detected. They participated in two major types of regulation, namely “specificity” regulation and “common” regulation. They might inhibit the growth of P. sojae mainly by inhibiting the activity of ribosome. A pot experiment indicated that B. amyloliquefaciens and B. subtilis enhanced the resistance of soybean to P. sojae, and their control effects of them were 70.7% and 65.5%, respectively. In addition, B. amyloliquefaciens fermentation broth could induce an active oxygen burst, NO production, callose deposition, and lignification. B. subtilis could also stimulate the systemic to develop the resistance of soybean by lignification, and phytoalexin.

Funder

National Natural Science Foundation of China

Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3