Chromatic Confocal Displacement Sensor with Optimized Dispersion Probe and Modified Centroid Peak Extraction Algorithm

Author:

Bai Jiao,Li Xinghui,Wang Xiaohao,Zhou Qian,Ni Kai

Abstract

Chromatic confocal technology (CCT) is one of the most promising methods for the contactless and accurate measurement of structure profiles. Based on the principles of chromatic dispersion and confocal theory, a dispersion probe is proposed and optimized with several commercial and cheap refractive index lenses. The probe provides 0.3× magnification and a dispersion range of 400 μm with a commercial LED source with an effective bandwidth of ca. 450–623 nm. Since the noise fluctuation can affect the extraction stability of the focal wavelength, a modification to the centroid peak extraction algorithm is proposed in this paper, where several virtual pixels are interpolated among the real pixels of the spectrometer before thresholding. In addition, a series of experiments were carried out to test the system’s displacement measurement performance. The results clearly show that stability is improved by the modified algorithm, and the calibration repeatability is ±0.3 μm in the full measurement range with a linear stage. The standard deviation at the fixed position has an optimal value of 0.009 μm. The section profile of a Fresnel lens is measured by the CCT system to demonstrate its high feasibility and efficiency.

Funder

Shenzhen Science and Technology Innovation Commission

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Youth Funding of Shenzhen Graduate of Tsinghua University

National Key Research and Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3