Fault Diagnosis of Rolling Bearings Based on WPE by Wavelet Decomposition and ELM

Author:

Xi Caiping,Gao Zhibo

Abstract

The fault diagnosis classification method based on wavelet decomposition and weighted permutation entropy (WPE) by the extreme learning machine (ELM) is proposed to address the complexity and non-smoothness of rolling bearing vibration signals. The wavelet decomposition based on ‘db3’ is used to decompose the signal into four layers and extract the approximate and detailed components, respectively. Then, the WPE values of the approximate (CA) and detailed (CD) components of each layer are calculated and composed to be the feature vectors, which are finally fed into the extreme learning machine with optimal parameters for classification. The comparative study of the simulations based on WPE and permutation entropy (PE) shows that the classification method of seven kinds of signals of normal bearing signals and six types of fault states (7 mils and 14 mils) based on WPE (CA, CD) with the number of nodes in the hidden layers of ELM determined by the five-fold cross-validation has the best performances, the training accuracy can reach 100%, and the testing accuracy can reach 98.57% with 37 nodes of the hidden layer by ELM. The proposed method using WPE (CA, CD) by ELM provides guidance for the multi-classification of normal bearing signals.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3