Research on Feature Extraction and Fault Diagnosis Method for Rolling Bearing Vibration Signals Based on Improved FDM-SVD and CYCBD

Author:

Yang Jingzong1ORCID

Affiliation:

1. School of Dig Data, Baoshan University, Baoshan 678000, China

Abstract

In mechanical equipment, rolling bearing components are constantly exposed to intricate and diverse environmental conditions, rendering them vulnerable to wear, performance degradation, and potential malfunctions. To precisely extract and discern rolling bearing vibration signals amidst intricate noise interference, this paper introduces a fault feature extraction and diagnosis methodology that seamlessly integrates an improved Fourier decomposition method (FDM), singular value decomposition (SVD), and maximum second-order cyclostationary blind convolution (CYCBD). Initially, the FDM is employed to meticulously decompose the bearing fault signals into numerous signal components. Subsequently, a comprehensive weighted screening criterion is formulated, aiming to strike a balance between multiple indicators, thereby enabling the selective screening and reconstruction of pertinent signal components. Furthermore, SVD and CYCBD techniques are introduced to carry out intricate processing and envelope demodulation analysis of the reconstructed signals. Through rigorous simulation experiments and practical rolling bearing fault diagnosis tests, the method’s noteworthy effectiveness in suppressing noise interference, enhancing fault feature information, and efficiently extracting fault features is unequivocally demonstrated. Furthermore, compared to traditional time–frequency analysis methods such as EMD, EEMD, ITD, and VMD, as well as traditional deconvolution methods like MED, OMEDA, and MCKD, this method exhibits significant advantages, providing an effective solution for diagnosing rolling bearing faults in environments with strong background noise.

Funder

Yunnan Fundamental Research Projects

Training Program for Baoshan Xingbao Talents

10th batch of Baoshan young and middle-aged leaders training academic and technical project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3