Jointly Optimize the Residual Energy of Multiple Mobile Devices in the MEC–WPT System

Author:

Li LongORCID,Xu Gaochao,Liu PengORCID,Li Yang,Ge Jiaqi

Abstract

With the rapid popularity of mobile devices (MDs), mobile edge computing (MEC) networks and wireless power transmission (WPT) will receive more attention. Naturally, by integrating these two technologies, the inherent energy consumption during task execution can be effectively reduced, and the collected energy can be provided to charge the MD. In this article, our research focuses on extending the battery time of MDs by maximizing the harvested energy and minimizing the consumed energy in the MEC–WPT system, which is formulated as a residual energy maximization problem and also a non-convex optimization problem. On the basis of study on maximizing the residual energy under multi-users and multi-time blocks, we propose an effective jointly optimization method (i.e., jointly optimize the energy harvesting time, task-offloading time, task-offloading size and the MDs’ CPU frequency), which combines the convex optimization method and the augmented Lagrangian to solve the residual energy maximum problem. We leverage Time Division Multiple Access (TMDA) mode to coordinate computation offloading. Simulation results show that our scheme has better performance than the benchmark schemes on maximizing residual energy. In particular, our proposed scheme is outstanding in the failure rate of multiple MDs and can adapt to the task size to minimize the failure rate.

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3