1. Eversberg, L., and Lambrecht, J. (2021). Generating Images with Physics-Based Rendering for an Industrial Object Detection Task: Realism versus Domain Randomization. Sensors, 21.
2. Tsirikoglou, A. (2022). Synthetic Data for Visual Machine Learning: A Data-Centric Approach. [Ph.D. Thesis, Linköping University].
3. Synthetic Training Data Generation for Visual Object Identification on Load Carriers;Schoepflin;Procedia CIRP,2021
4. Seib, V., Lange, B., and Wirtz, S. (2020). Mixing Real and Synthetic Data to Enhance Neural Network Training—A Review of Current Approaches. arXiv.
5. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C.L. (2014). Computer Vision—ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Springer.