Automatic Image Generation Pipeline for Instance Segmentation of Deformable Linear Objects

Author:

Dirr Jonas1,Gebauer Daniel1,Yao Jiajun1,Daub Rüdiger1ORCID

Affiliation:

1. Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany

Abstract

Robust detection of deformable linear objects (DLOs) is a crucial challenge for the automation of handling and assembly of cables and hoses. The lack of training data is a limiting factor for deep-learning-based detection of DLOs. In this context, we propose an automatic image generation pipeline for instance segmentation of DLOs. In this pipeline, a user can set boundary conditions to generate training data for industrial applications automatically. A comparison of different replication types of DLOs shows that modeling DLOs as rigid bodies with versatile deformations is most effective. Further, reference scenarios for the arrangement of DLOs are defined to generate scenes in a simulation automatically. This allows the pipelines to be quickly transferred to new applications. The validation of models trained with synthetic images and tested on real-world images shows the feasibility of the proposed data generation approach for segmentation of DLOs. Finally, we show that the pipeline yields results comparable to the state of the art but has advantages in reduced manual effort and transferability to new use cases.

Funder

Bavarian Ministry of Economic Affairs, Regional Development, and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Eversberg, L., and Lambrecht, J. (2021). Generating Images with Physics-Based Rendering for an Industrial Object Detection Task: Realism versus Domain Randomization. Sensors, 21.

2. Tsirikoglou, A. (2022). Synthetic Data for Visual Machine Learning: A Data-Centric Approach. [Ph.D. Thesis, Linköping University].

3. Synthetic Training Data Generation for Visual Object Identification on Load Carriers;Schoepflin;Procedia CIRP,2021

4. Seib, V., Lange, B., and Wirtz, S. (2020). Mixing Real and Synthetic Data to Enhance Neural Network Training—A Review of Current Approaches. arXiv.

5. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C.L. (2014). Computer Vision—ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Springer.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards cognition-augmented human-centric assembly: A visual computation perspective;Robotics and Computer-Integrated Manufacturing;2025-02

2. Monocular Estimation of Connector Orientation: Combining Deformable Linear Object Priors and Smooth Angle Classification;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

3. Scalable Shared Encoding Architecture for Learning-Based Error Detection in Robotic Wiring Harness Assembly;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

4. SORDI.ai: large-scale synthetic object recognition dataset generation for industries;Multimedia Tools and Applications;2024-07-09

5. Deep learning-based localization of electrical connector sockets for automated mating;Production Engineering;2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3