Coverage-Balancing User Selection in Mobile Crowd Sensing with Budget Constraint

Author:

Wang Yanan,Sun GuodongORCID,Ding Xingjian

Abstract

Mobile crowd sensing (MCS) is a new computing paradigm for the internet of things, and it is widely accepted as a powerful means to achieve urban-scale sensing and data collection. In the MCS campaign, the smart mobilephone users can detect their surrounding environments with their on-phone sensors and return the sensing data to the MCS organizer. In this paper, we focus on the coverage-balancing user selection (CBUS) problem with a budget constraint. Solving the CBUS problem aims to select a proper subset of users such that their sensing coverage is as large and balancing as possible, yet without violating the budget specified by the MCS campaign. We first propose a novel coverage balance-based sensing utility model, which effectively captures the joint requirement of the MCS requester for coverage area and coverage balance. We then formally define the CBUS problem under the proposed sensing utility model. Because of the NP-hardness of the CBUS problem, we design a heuristic-based algorithm, called MIA, which tactfully employs the maximum independent set model to determine a preliminary subset of users from all the available users and then adjusts this user subset to improve the budget implementation. MIA also includes a fast approach to calculating the area of the union coverage with any complicated boundaries, which is also applicable to any MCS scenarios that are set up with the coverage area-based sensing utility. The extensive numeric experiments show the efficacy of our designs both in coverage balance and in the total coverage area.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3