UAV-Assisted Cluster-Based Task Allocation for Mobile Crowdsensing in a Space–Air–Ground–Sea Integrated Network

Author:

Liu Yang1,Li Yong1,Cheng Wei1ORCID,Wang Weiguang2ORCID,Yang Junhua3ORCID

Affiliation:

1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China

2. School of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China

3. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Abstract

Mobile crowdsensing (MCS), which is a grassroots sensing paradigm that utilizes the idea of crowdsourcing, has attracted the attention of academics. More and more researchers have devoted themselves to adopting MCS in space–air–ground–sea integrated networks (SAGSINs). Given the dynamics of the environmental conditions in SAGSINs and the uncertainty of the sensing capabilities of mobile people, the quality and coverage of the sensed data change periodically. To address this issue, we propose a novel UAV-assisted cluster-based task allocation (UCTA) algorithm for MCS in SAGSINs in a two-stage process. We first introduce the edge nodes and establish a three-layer hierarchical system with UAV-assistance, called “Platform–Edge Cluster–Participants”. Moreover, an edge-aided attribute-based cluster algorithm is designed, aiming at organizing tasks into clusters, which significantly diminishes both the communication overhead and computational complexity while enhancing the efficiency of task allocation. Subsequently, a greedy selection algorithm is proposed to select the final combination that performs the sensing task in each cluster. Extensive simulations are conducted comparing the developed algorithm with the other three benchmark algorithms, and the experimental results unequivocally endorse the superiority of our proposed UCTA algorithm.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3