Model Tests of Soil Reinforcement Inside the Bucket Foundation with Vacuum Electroosmosis Method

Author:

Zhai Hanbo,Ding Hongyan,Zhang Puyang,Le Conghuan

Abstract

Offshore wind turbine foundations are commonly subjected to large horizontal, vertical, and bending moment loads. Marine soils have high moisture content, high compressibility, high sensitivity, and low strength, resulting in insufficient foundation bearing capacity. In order to improve the bearing capacity of wind turbine foundations and reduce foundation settlement, an internal vacuum preloading method combined with electroosmosis reinforcement is used to reinforce the soil within bucket foundations. The pore water pressure, vertical settlement, pumping quality of the soil during the reinforcement process, soil moisture content before and after the reinforcement, and undrained shear strength were analyzed. Horizontal and vertical bearing capacity model tests were carried out on the reinforced and nonreinforced soil inside the bucket foundation. Results show that vacuum preloading combined with electroosmosis reinforcement reduces soil moisture content inside the bucket foundation by approximately 20%, and the undrained shear strength of the internal soil increases by approximately 20 times. Soil reinforcement has high spatial uniformity. Results of the bucket foundation bearing capacity model show that when the soil inside the bucket foundation is strengthened, horizontal bearing capacity increased by 2.9 times and vertical bearing capacity increased by 2.1 times. Vacuum preloading combined with electroosmosis reinforcement can effectively improve the shear strength of soft soil and enhance the bearing capacity and stability of bucket foundations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3