FEUSNet: Fourier Embedded U-Shaped Network for Image Denoising

Author:

Li Xi12,Han Jingwei1,Yuan Quan2,Zhang Yaozong2,Fu Zhongtao2,Zou Miao1,Huang Zhenghua2ORCID

Affiliation:

1. School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China

2. College of Information and Artificial Intelligence, Nanchang Institute of Science and Technology, Nanchang 330108, China

Abstract

Deep convolution neural networks have proven their powerful ability in comparing many tasks of computer vision due to their strong data learning capacity. In this paper, we propose a novel end-to-end denoising network, termed Fourier embedded U-shaped network (FEUSNet). By analyzing the amplitude spectrum and phase spectrum of Fourier coefficients, we find that low-frequency features of an image are in the former while noise features are in the latter. To make full use of this characteristic, Fourier features are learned and are concatenated as a prior module that is embedded into a U-shaped network to reduce noise while preserving multi-scale fine details. In the experiments, we first present ablation studies on the Fourier coefficients’ learning networks and loss function. Then, we compare the proposed FEUSNet with the state-of-the-art denoising methods in quantization and qualification. The experimental results show that our FEUSNet performs well in noise suppression and preserves multi-scale enjoyable structures, even outperforming advanced denoising approaches.

Funder

the scientific research foundation of Nanchang Institute of Science and Technology

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3