YOLO-SS-Large: A Lightweight and High-Performance Model for Defect Detection in Substations

Author:

Wang Qian1ORCID,Yang Lixin1,Zhou Bin2,Luan Zhirong1ORCID,Zhang Jiawei1

Affiliation:

1. Qujiang Campus, School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China

2. North China Electric Power Research Institute Co., Ltd. Xi’an Branch, Xi’an 710000, China

Abstract

With the development of deep fusion intelligent control technology and the application of low-carbon energy, the number of renewable energy sources connected to the distribution grid has been increasing year by year, gradually replacing traditional distribution grids with active distribution grids. In addition, as an important component of the distribution grid, substations have a complex internal environment and numerous devices. The problems of untimely defect detection and slow response during intelligent inspections are particularly prominent, posing risks and challenges to the safe and stable operation of active distribution grids. To address these issues, this paper proposes a high-performance and lightweight substation defect detection model called YOLO-Substation-large (YOLO-SS-large) based on YOLOv5m. The model improves lightweight performance based upon the FasterNet network structure and obtains the F-YOLOv5m model. Furthermore, in order to enhance the detection performance of the model for small object defects in substations, the normalized Wasserstein distance (NWD) and complete intersection over union (CIoU) loss functions are weighted and fused to design a novel loss function called NWD-CIoU. Lastly, based on the improved model mentioned above, the dynamic head module is introduced to unify the scale-aware, spatial-aware, and task-aware attention of the object detection heads of the model. Compared to the YOLOv5m model, the YOLO-SS-Large model achieves an average precision improvement of 0.3%, FPS enhancement of 43.5%, and parameter reduction of 41.0%. This improved model demonstrates significantly enhanced comprehensive performance, better meeting the requirements of the speed and precision for substation defect detection, and plays an important role in promoting the informatization and intelligent construction of active distribution grids.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3