Mechanical Behaviors of the Origami-Inspired Horseshoe-Shaped Solar Arrays

Author:

Li Zhi,Yu Chengguo,Qi Luqiao,Xing Shichao,Shi YanORCID,Gao Cunfa

Abstract

The importance of flexibility has been widely noticed and concerned in the design and application of space solar arrays. Inspired by origami structures, we introduce an approach to realizing stretchable and bendable solar arrays via horseshoe-shaped substrate design. The structure has the ability to combine rigid solar cells and soft substrates skillfully, which can prevent damage during deformations. The finite deformation theory is adapted to find the analytic model of the horseshoe-shaped structure via simplified beam theory. In order to solve the mechanical model, the shooting method, a numerical method to solve ordinary differential equation (ODE) is employed. Finite element analyses (FEA) are also performed to verify the developed theoretical model. The influences of the geometric parameters on deformations and forces are analyzed to achieve the optimal design of the structures. The stretching tests of horseshoe-shaped samples manufactured by three-dimensional (3D) printing are implemented, whose results shows a good agreement with those from theoretical predictions. The developed models can serve as the guidelines for the design of flexible solar arrays in spacecraft.

Funder

National Natural Science Foundation of China

Joint Fund of Advanced Aerospace Manufacturing Technology Research

China Postdoctoral Science Foundation

University Natural Science Research Project of Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3