Abstract
The dewatering of dredged sludge is a critical step in the minimization and reutilization of this solid waste. However, there is a lack of available literature on the fundamental drying characteristics of dredged sludge. In this work, two kinds of typical sludge dredged from an urban watercourse were tested by low-field NMR to investigate the water distribution in sludge and it was found that water contained in sludge can be classified into three categories: free water, capillary water and bound water. In addition, a novel model was proposed based on the Lennard-Jones equation and Kelvin law to quantitatively evaluate the binding energy during drying. Further, the model results were experimentally verified by thermogravimetry differential thermal analysis (TG-DTA). Results show that the trends of the model are consistent with the experimental values and the gradient of energy consumption during dehydration can be divided into three main stages. In stage 1, the total energy required for dewatering equals the latent heat of free water. In stage 2, binding energy reaches dozens to hundreds of kJ/kg accounting for capillary action. In stage 3, binding energy increases steeply reaching almost thousands of kJ/kg due to intermolecular interactions. All the discovered aspects could improve the management and disposal of dredged sludge from an energy cost perspective.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献