Additive Ensemble Neural Network with Constrained Weighted Quantile Loss for Probabilistic Electric-Load Forecasting

Author:

Lopez-Martin ManuelORCID,Sanchez-Esguevillas Antonio,Hernandez-Callejo LuisORCID,Arribas Juan IgnacioORCID,Carro BelenORCID

Abstract

This work proposes a quantile regression neural network based on a novel constrained weighted quantile loss (CWQLoss) and its application to probabilistic short and medium-term electric-load forecasting of special interest for smart grids operations. The method allows any point forecast neural network based on a multivariate multi-output regression model to be expanded to become a quantile regression model. CWQLoss extends the pinball loss to more than one quantile by creating a weighted average for all predictions in the forecast window and across all quantiles. The pinball loss for each quantile is evaluated separately. The proposed method imposes additional constraints on the quantile values and their associated weights. It is shown that these restrictions are important to have a stable and efficient model. Quantile weights are learned end-to-end by gradient descent along with the network weights. The proposed model achieves two objectives: (a) produce probabilistic (quantile and interval) forecasts with an associated probability for the predicted target values. (b) generate point forecasts by adopting the forecast for the median (0.5 quantiles). We provide specific metrics for point and probabilistic forecasts to evaluate the results considering both objectives. A comprehensive comparison is performed between a selection of classic and advanced forecasting models with the proposed quantile forecasting model. We consider different scenarios for the duration of the forecast window (1 h, 1-day, 1-week, and 1-month), with the proposed model achieving the best results in almost all scenarios. Additionally, we show that the proposed method obtains the best results when an additive ensemble neural network is used as the base model. The experimental results are drawn from real loads of a medium-sized city in Spain.

Funder

Spanish Ministry for Science, Innovation and Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3