An ensemble neural network model for predicting the energy utility in individual houses

Author:

Kumaraswamy S.,Subathra K.,Dattathreya ,Geeitha S.,Ramkumar Govindaraj,Metwally Ahmed Sayed M.,Ansari Mohd Zahid

Funder

King Saud University

Publisher

Elsevier BV

Reference25 articles.

1. Building deep neural network model for short term electricity consumption forecasting;Chandramitasari,2018

2. A comparative study of forecasting electricity consumption using machine learning models;Lee;Mathematics,2022

3. A hybrid neural network model for power demand forecasting”;Kim;Energies,2019

4. Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM (1, 1) model;Yuan;Energy,2016

5. Predicting the household power consumption using CNN-LSTM hybrid networks;Kim,2018

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applying neural networks for short and long-term hourly electricity consumption forecasting in universities: A simultaneous approach for energy management;Journal of Building Engineering;2024-11

2. Machine Learning-Based Real-Time Fraud Detection in Financial Transactions;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

3. Application of deep reinforcement learning techniques to optimise resource allocation in wireless communication Systems;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

4. Application of Machine Learning Algorithms for Fault Detection and Diagnosis in Power Systems;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

5. Improving Consumer Engagement with AI Chatbots: Exploring Perceived Humanness, Social Presence, and Interactivity Factors;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3