Cloud Detection for FY Meteorology Satellite Based on Ensemble Thresholds and Random Forests Approach

Author:

Fu Hualian,Shen Yuan,Liu JunORCID,He Guangjun,Chen Jinsong,Liu Ping,Qian Jing,Li Jun

Abstract

Cloud detection is the first step for the practical processing of meteorology satellite images, and also determines the accuracy of subsequent applications. For Chinese FY serial satellite, the National Meteorological Satellite Center (NSMC) officially provides the cloud detection products. In practical applications, there still are some misdetection regions. Therefore, this paper proposes a cloud detection method trying to improve NSMC’s products based on ensemble threshold and random forest. The binarization is firstly performed using ten threshold methods of the first infrared band and visible channel of the image, and the binarized images are obtained by the voting strategy. Secondly, the binarized images of the two channels are combined to form an ensemble threshold image. Then the middle part of the ensemble threshold image and the upper and lower margins of NSMC’s cloud detection result are used as the sample collection source data for the random forest. Training samples rely only on source image data at one moment, and then the trained random forest model is applied to images of other times to obtain the final cloud detection results. This method performs well on FY-2G images and can effectively detect incorrect areas of the cloud detection products of the NSMC. The accuracy of the algorithm is evaluated by manually labeled ground truth using different methods and objective evaluation indices including Probability of Detection (POD), False Alarm Rate (FAR), Critical Success Index (CSI) and the average and standard deviation of all indices. The accuracy results show that the proposed method performs better than the other methods with less incorrect detection regions. Though the proposed approach is simple enough, it is a useful attempt to improve the cloud detection result, and there is plenty of room for further improvement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3