Spatial–Temporal Approach and Dataset for Enhancing Cloud Detection in Sentinel-2 Imagery: A Case Study in China

Author:

Gong Chengjuan12,Yin Ranyu1ORCID,Long Tengfei1ORCID,Jiao Weili1,He Guojin1,Wang Guizhou1

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Clouds often cause challenges during the application of optical satellite images. Masking clouds and cloud shadows is a crucial step in the image preprocessing workflow. The absence of a thermal band in products of the Sentinel-2 series complicates cloud detection. Additionally, most existing cloud detection methods provide binary results (cloud or non-cloud), which lack information on thin clouds and cloud shadows. This study attempted to use end-to-end supervised spatial–temporal deep learning (STDL) models to enhance cloud detection in Sentinel-2 imagery for China. To support this workflow, a new dataset for time-series cloud detection featuring high-quality labels for thin clouds and haze was constructed through time-series interpretation. A classification system consisting of six categories was employed to obtain more detailed results and reduce intra-class variance. Considering the balance of accuracy and computational efficiency, we constructed four STDL models based on shared-weight convolution modules and different classification modules (dense, long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and transformer). The results indicated that spatial and temporal features were crucial for high-quality cloud detection. The STDL models with simple architectures that were trained on our dataset achieved excellent accuracy performance and detailed detection of clouds and cloud shadows, although only four bands with a resolution of 10 m were used. The STDL models that used the Bi-LSTM and that used the transformer as the classifier showed high and close overall accuracies. While the transformer classifier exhibited slightly lower accuracy than that of Bi-LSTM, it offered greater computational efficiency. Comparative experiments also demonstrated that the usable data labels and cloud detection results obtained with our workflow outperformed the results of the existing s2cloudless, MAJA, and CS+ methods.

Funder

Fund for Pioneering Research in Science and Disruptive Technologies through the Aerospace Information Research Institute at the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3