Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus)

Author:

Negara Bertoka Fajar Surya PerwiraORCID,Lee Mi-Jeong,Tirtawijaya GabrielORCID,Cho Woo-HeeORCID,Sohn Jae-Hak,Kim Jin-Soo,Choi Jae-SukORCID

Abstract

Frying is an old method of processing food, especially fish. Mackerel is one of the most consumed fish worldwide because of its high nutritional value. Previously, only a study on the effects of deep frying of fried mackerel has been performed. However, no study has been conducted on the effects of different frying methods on the physiochemical and nutritional properties of chub mackerel. Therefore, in this study, we evaluated the physiochemical and nutritional characteristics of deep fried, vacuum fried, and air fried chub mackerel. Thawing methods were compared and the best method was selected. High frequency defrosting (HFD) was used to thaw frozen fillet mackerel before frying. Response surface methodology (RSM) was used to optimize the temperature and frying time of the three frying methods. The physiochemical and nutritional characteristics, including volatile basic nitrogen (VBN), thiobarbituric acid-reactive substances (TBARS), pH, overall acceptance, proximate, fatty acid, and amino acids of fried mackerel were investigated. The HFD exhibited the lowest number of drips with a short thawing time. The RSM showed that the optimum temperature and frying time for deep, vacuum, and air frying were 165 °C for 3 min, 95 °C for 7 min, and 160 °C for 15 min, respectively. Vacuum frying showed the lowest increase in VBN, TBARS, and pH, and significantly (p < 0.05) differed from the others. It also resulted in increased amino acid and preserved fatty acid content. These findings suggest that vacuum frying is the best frying method which has little oxidation and can maintain nutrition. The results of this study could be applied in the fisheries industry to produce the best fried mackerel and preserve its high nutritive value.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3