Abstract
A demand for high efficiency traction motors has been accelerated by the promotion of electrified vehicles, such as battery and fuel cell electric vehicles. As a part of development of the high efficiency traction motor, this paper reports a comparative study on two kinds of hybrid excitation flux switching motors (HEFSM) as a variable flux machine. One is the conventional HEFSM, which consists of a stator with constantly magnetized-permanent magnets, field excitation coils (FECs) and three-phase armature windings, and a rotor with salient poles like a switched reluctance motor. The other is a HEFSM employing variably magnetizable-permanent magnets (VM-PMs) that replace a part in the FEC slot area in the conventional one. Based on the variable magnetization nature of VM-PMs, the latter HEFSM promises that the replacement of magnetomotive force (mmf) of FECs with that of the VM-PMs makes the motor efficiency better at both low- and high-speed under the low-torque condition, that is, at both urban driving or highway cruising. To verify that, finite element analysis- (FEA)-based design simulations, as well as experimental performance evaluations for the two kinds of HEFSM, were conducted under reasonable dimensional and electrical constraints. As a result, it is shown that the latter HEFSM can achieve higher motor efficiency at the low-torque and high-speed region while keeping the motor efficiency at the low-torque and low-speed region.
Funder
New Energy and Industrial Technology Development Organization
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献