Discrepancy Analysis for Detecting Candidate Parcels Requiring Update of Land Category in Cadastral Map Using Hyperspectral UAV Images: A Case Study in Jeonju, South Korea

Author:

Park Seula,Song AhramORCID

Abstract

The non-spatial information of cadastral maps must be repeatedly updated to monitor recent changes in land property and to detect illegal land registrations by tax evaders. Since non-spatial information, such as land category, is usually updated by field-based surveys, it is time-consuming and only a limited area can be updated at a time. Although land categories can be updated by remote sensing techniques, the update is typically performed through manual analysis, namely through a visually interpreted comparison between the newly generated land information and the existing cadastral maps. A cost-effective, fast alternative to the current surveying methods would improve the efficiency of land management. For this purpose, the present study analyzes the discrepancy between the existing cadastral map and the actual land use. Our proposed method operates in two steps. First, an up-to-date land cover map is generated from hyperspectral unmanned aerial vehicle (UAV) images. These images are effectively classified by a hybrid two- and three-dimensional convolutional neural network. Second, a discrepancy map, which contains the ratio of the area that is being used differently from the registered land use in each parcel, is constructed through a three-stage inconsistency comparison. As a case study, the proposed method was evaluated using hyperspectral UAV images acquired at two sites of Jeonju in South Korea. The overall classification accuracies of six land classes at Sites 1 and 2 were 99.93% and 99.75% and those at Sites 1 and 2 are 39.4% and 34.4%, respectively, which had discrepancy ratios of 50% or higher. Finally, discrepancy maps between the land cover maps and existing cadastral maps were generated and visualized. The method automatically reveals the inconsistent parcels requiring updates of their land category. Although the performance of the proposed method depends on the classification results obtained from UAV imagery, the method allows a flexible modification of the matching criteria between the land categories and land coverage. Therefore, it is generalizable to various cadastral systems and the discrepancy ratios will provide practical information and significantly reduce the time and effort for land monitoring and field surveying.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3