Deep Fully Convolutional Networks for Cadastral Boundary Detection from UAV Images

Author:

Xia XueORCID,Persello ClaudioORCID,Koeva MilaORCID

Abstract

There is a growing demand for cheap and fast cadastral mapping methods to face the challenge of 70% global unregistered land rights. As traditional on-site field surveying is time-consuming and labor intensive, imagery-based cadastral mapping has in recent years been advocated by fit-for-purpose (FFP) land administration. However, owing to the semantic gap between the high-level cadastral boundary concept and low-level visual cues in the imagery, improving the accuracy of automatic boundary delineation remains a major challenge. In this research, we use imageries acquired by Unmanned Aerial Vehicles (UAV) to explore the potential of deep Fully Convolutional Networks (FCNs) for cadastral boundary detection in urban and semi-urban areas. We test the performance of FCNs against other state-of-the-art techniques, including Multi-Resolution Segmentation (MRS) and Globalized Probability of Boundary (gPb) in two case study sites in Rwanda. Experimental results show that FCNs outperformed MRS and gPb in both study areas and achieved an average accuracy of 0.79 in precision, 0.37 in recall and 0.50 in F-score. In conclusion, FCNs are able to effectively extract cadastral boundaries, especially when a large proportion of cadastral boundaries are visible. This automated method could minimize manual digitization and reduce field work, thus facilitating the current cadastral mapping and updating practices.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Investigating Semi-Automated Cadastral Boundaries Extraction from Airborne Laser Scanned Data

2. The justification of cadastral systems in developing countries;Williamson;Geomatica,1997

3. Fit-For-Purpoes Land Administration: Guiding Principles for Country Implementation;Enemark,2016

4. Fit-For-Purpose Land Administration;Enemark,2014

5. Exploring UAV in Indonesian cadastral boundary data acquisition

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3