Classification of Tumor in Brain MR Images Using Deep Convolutional Neural Network and Global Average Pooling

Author:

Malla Prince Priya1ORCID,Sahu Sudhakar1,Alutaibi Ahmed I.2ORCID

Affiliation:

1. School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India

2. College of Computer and Information Sciences, Majmaah University, Majmaah 11952, Saudi Arabia

Abstract

Brain tumors can cause serious health complications and lead to death if not detected accurately. Therefore, early-stage detection of brain tumors and accurate classification of types of brain tumors play a major role in diagnosis. Recently, deep convolutional neural network (DCNN) based approaches using brain magnetic resonance imaging (MRI) images have shown excellent performance in detection and classification tasks. However, the accuracy of DCNN architectures depends on the training of data samples since it requires more precise data for better output. Thus, we propose a transfer learning-based DCNN framework to classify brain tumors for example meningioma tumors, glioma tumors, and pituitary tumors. We use a pre-trained DCNN architecture VGGNet which is previously trained on huge datasets and used to transfer its learning parameters to the target dataset. Also, we employ transfer learning aspects such as fine-tune the convolutional network and freeze the layers of the convolutional network for better performance. Further, this proposed approach uses a Global Average Pooling (GAP) layer at the output to avoid overfitting issues and vanishing gradient problems. The proposed architecture is assessed and compared with competing deep learning based brain tumor classification approaches on the Figshare dataset. Our proposed approach produces 98.93% testing accuracy and outperforms the contemporary learning-based approaches.

Funder

Majmaah University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3