Fluid-Structure Interaction Analysis of a Competitive Car during Brake-in-Turn Manoeuvre

Author:

Broniszewski JakubORCID,Piechna Janusz RyszardORCID

Abstract

The relationship between the presented work and energy conservation is direct and indirect. Most of the literature related to energy-saving focuses on reducing the aerodynamic drag of cars, which typically leads to the appearance of vehicle motion instabilities at high speeds. Typically, this instability is compensated for by moving aerodynamic body components activated above a certain speed and left in that position until the vehicle speed drops. This change in vehicle configuration results in a significant increase in drag at high velocities. The presented study shows a fully coupled approach to fluid–structure interaction analyses of a car during a high-speed braking-in-turn manoeuvre. The results show how the aerodynamic configuration of a vehicle affects its dynamic behaviour. In this work, we used a novel approach, combining Computational Fluid Dynamics (CFD) analysis with the Multibody Dynamic System. The utilisation of an overset technique allows for car movement in the computational domain. Adding Moving Reference Frame (MRF) to this motion removes all restrictions regarding car trajectory and allows for velocity changes over time. We performed a comparative analysis for two aerodynamic configurations. In the first one, a stationary rear airfoil was in a base position parallel to a trunk generating low drag. No action of the driver was assumed. In the second scenario, brake activation initiates the rotation of the rear airfoil reaching in 0.1 s final position corresponding to maximum aerodynamic downforce generation. Also, no action of the driver was assumed. In the second scenario, the airfoil was moving from the base position up to the point when the whole system approached its maximum downforce. To determine this position, we ran a separated quasi-steady analysis in which the airfoil was rotating slowly to avoid transient effects. The obtained results show the importance of the downforce and load balance on car stability during break-in-turn manoeuvres. They also confirm that the proposed methodology of combining two independent solvers to analyse fluid–structure phenomena is efficient and robust. We captured the aerodynamic details caused by the car’s unsteady movement.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference19 articles.

1. Techniques for Aerodynamic Analysis of Cornering Vehicles

2. Vehicle Dynamics Compendium for Course MMF062https://publications.lib.chalmers.se/records/fulltext/225751/local_225751.pdf

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3