Numerical Study of the Sports Car Aerodynamic Enhancements
Abstract
This study was prepared to demonstrate how the aerodynamics of a sports car can be enhanced, emphasizing aerodynamic improvements, and utilizing small movable elements. All the presented results were obtained using the numerical simulations performed in ANSYS Fluent in steady-state conditions. It was investigated how the performance of a car equipped with the splitter and the rear wing could be improved. The benefits of a top-mounted wing configuration were presented compared to a bottom-mounted setup. A change to the top-mounting configuration enabled undisturbed flow around the suction side of the wing and a more favorable placement of the wing to the car body. In the given case, an 80% increase of downforce was achieved in the performance mode of the car setup and a 16% increase of drag in the air braking mode. A method of the front splitter active steering was presented, which enabled a change of the generated downforce using only a small element that enabled an instant change of 30% without the necessity of moving the whole splitter plate. The described modifications of the sports car not only improved its aerodynamic properties but also enabled the means to accommodate it with an active aerodynamic system that would allow a quick adaptation to the current driving conditions.
Funder
National Centre for Research and Development
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference36 articles.
1. Race Car Aerodynamics: Designing for Speed;Katz,1996
2. Hucho—Aerodynamik des Automobils,2013
3. Competition Car Aerodynamics;McBeath,2015
4. Adaptive aerodynamics of the new Porsche 911 Turbo
5. Mercedes-AMG GTR: Aerodynamics for the Record;Estrada,2018