Two-Layer Ring Truss-Based Space Solar Power Station

Author:

Fan Guanheng,Zhang Yiqun,Ji Xiangfei,Yang Yang

Abstract

A space solar power station (SSPS) has become a huge potential candidate to provide abundant and clean electrical energy for terrestrial users by collecting and converting solar power in space. In this paper, an innovative two-layer ring truss-based SSPS is proposed. It consists of the top layer concentrator-based spherical one-time reflection region, the bottom layer space radiator using symmetric or asymmetric cable networks, a ring truss for a supporting structure, a photoelectric conversion system, and transmitting antennas. The construction strategies including the triangular facets modularity of top layer concentrator, area requirement of bottom layer space radiator, two-segment optimization design of generatrix of photoelectric conversion system, and aperture derivation of transmitting antenna are carried out. Then, the performance analysis mainly including the modularization theory error calculation, energy collection and distribution, and thermal characteristics in orbit of this proposed SSPS is presented. Finally, the system parameters are estimated and summarized for a better sense of the proposed SSPS. The results indicate that 100% energy collection can be achieved for an ideal concentrator, and 80% with a modular division layer of 6 and tracking error of no more than 2°. The results demonstrate the feasibility of the proposed SSPS concept and can provide a reference for future space energy harvesting and space exploration projects.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3