Deciphering the Global Proteomic Profile Involved in Methylmercury-Induced Cerebellar Neurodegeneration and Motor Dysfunction in Adult Rats

Author:

Bittencourt Leonardo OliveiraORCID,Matta Pedro Philipe Moreira,Nascimento Priscila CunhaORCID,Eiró-Quirino LucianaORCID,Aragão Walessa Alana BragançaORCID,Dionizio Aline,Fernandes Luanna Melo PereiraORCID,Silva Márcia Cristina Freitas,Buzalaf Marília Afonso RabeloORCID,Aschner MichaelORCID,Crespo-Lopez Maria ElenaORCID,Maia Cristiane Socorro FerrazORCID,Lima Rafael RodriguesORCID

Abstract

Mercury is a ubiquitous pollutant in the environment with potential neurotoxic effects. Several populations are susceptible to mercurial exposure, especially methylmercury (MeHg) at low doses for long periods through food consumption. Given this, the present work aimed to assess the effects of long-term MeHg exposure on the cerebellum of rats from a translational perspective using a representative dose, assessing molecular, biochemical, morphological, and behavioral parameters. The model was produced by administering 40 µg/kg of MeHg for 60 days to adult male Wistar rats by oral gavage. As a result of this exposure, the animals presented motor deficits in open field and rotarod tests which were associated with an increase in total mercury content in cerebellar parenchyma, a reduction in antioxidant competence against peroxyl radicals, and increased nitrite and lipid peroxidation levels. The proteomic approach showed 317 modulated proteins. Such findings were associated with reductions in mature neuron and Purkinje cell densities and glial fibrillary acidic protein immunostained areas and increased microglial density. In addition, decreases in myelin basic protein and synaptophysin immunostaining were also observed. The results thus provided new evidence of the mechanisms underlying complex MeHg-induced neurodegeneration, especially the proteins underlying the biochemical and morphological features associated with motor dysfunction.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3