Ecotoxicological Assessment of “Glitter” Leachates in Aquatic Ecosystems: An Integrated Approach

Author:

Piccardo ManuelaORCID,Provenza Francesca,Anselmi Serena,Renzi Monia

Abstract

The most worrisome fraction within plastic pollution is that of microplastics (MP). A category of MP almost completely ignored is that of glitter. The objective of this study is to test the toxicity of nine types of glitter leachate (3 soak times: 3, 90 and 180 days) on model organisms in freshwater (Allivibrio fischeri, Raphidocelis subcapitata, Daphnia magna) and saltwater (Allivibrio fischeri, Phaeodactylum tricornutum, Paracentrotus lividus). An integrated approach was applied to obtain the percentage of ecotoxicological risk. The results show that (i) photosynthesizing primary producers are the most sensitive trophic level; (ii) algae transitioned from growth inhibition to biostimulation; (iii) D. magna showed higher sensitivity after 48 h compared to 24 h; (iv) A. fischeri responded more strongly in saltwater than in freshwater. The integrated data show a greater risk associated with the marine environment, with the highest risk for glitters that are hexagonal and composed of poly-methyl-methacrylate. Our multivariate analysis shows that the toxicity of plastic leaching is a complex phenomenon that depends on the sensitivity of the species, in some cases on the soaking time and on the medium, and is not clearly linked to the polymer type, the contact area or the colors of the particles.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference64 articles.

1. Plastics Europe (2021). Plastics—The Facts 2021 an analysis of European Plastics Production, Demand and Waste Data, Plastics Europe.

2. A Plasticene Lexicon;Mar. Pollut. Bull.,2020

3. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna?;Sci. Total Environ.,2022

4. Plastic waste inputs from land into the ocean;Science,2015

5. Transport and release of chemicals from plastics to the environment and to wildlife;Philos. Trans. R. Soc. B Biol. Sci.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3