Abstract
Perennial ryegrass (Lolium perenne L.) is an important forage grass and has the potential to be used in phytoremediation, while little information is available regarding the transcriptome profiling of ryegrass leaves in response to high levels of Cd. To investigate and uncover the physiological responses and gene expression characteristics of perennial ryegrass under Cd stress, a pot experiment was performed to study the transcriptomic profiles of ryegrass with Cd-spiked soils. Transcriptome sequencing and comparative analysis were performed on the Illumina RNA-Seq platform at different concentrations of Cd-treated (0, 50 and 500 mg·kg−1 soil) ryegrass leaves and differentially expressed genes (DEGs) were verified by RT-qPCR. The results show that high concentrations of Cd significantly inhibited the growth of ryegrass, while the lower concentrations (5 and 25 mg·kg−1) showed minor effects. The activity levels of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) increased in Cd-treated ryegrass leaves. We identified 1103 differentially expressed genes (DEGs) and profiled the molecular regulatory pathways of ryegrass leaves with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in response to Cd stress. Cd stress significantly increased the membrane part, the metabolic process, the cellular process and catalytic activity. The numbers of unigenes related to signal transduction mechanisms, post-translational modification, replication, recombination and repair significantly increased. KEGG function annotation and enrichment analysis were performed based on DEGs with different treatments, indicating that the MAPK signaling pathway, the mRNA surveillance pathway and RNA transport were regulated significantly. Taken together, this study explores the effect of Cd stress on the growth physiology and gene level of ryegrass, thus highlighting significance of preventing and controlling heavy metal pollution in the future.
Funder
Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献