Transcriptomic Sequencing Analysis on Key Genes and Pathways Regulating Cadmium (Cd) in Ryegrass (Lolium perenne L.) under Different Cadmium Concentrations

Author:

Cui BingjianORCID,Liu Chuncheng,Hu Chao,Liang Shengxian

Abstract

Perennial ryegrass (Lolium perenne L.) is an important forage grass and has the potential to be used in phytoremediation, while little information is available regarding the transcriptome profiling of ryegrass leaves in response to high levels of Cd. To investigate and uncover the physiological responses and gene expression characteristics of perennial ryegrass under Cd stress, a pot experiment was performed to study the transcriptomic profiles of ryegrass with Cd-spiked soils. Transcriptome sequencing and comparative analysis were performed on the Illumina RNA-Seq platform at different concentrations of Cd-treated (0, 50 and 500 mg·kg−1 soil) ryegrass leaves and differentially expressed genes (DEGs) were verified by RT-qPCR. The results show that high concentrations of Cd significantly inhibited the growth of ryegrass, while the lower concentrations (5 and 25 mg·kg−1) showed minor effects. The activity levels of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) increased in Cd-treated ryegrass leaves. We identified 1103 differentially expressed genes (DEGs) and profiled the molecular regulatory pathways of ryegrass leaves with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in response to Cd stress. Cd stress significantly increased the membrane part, the metabolic process, the cellular process and catalytic activity. The numbers of unigenes related to signal transduction mechanisms, post-translational modification, replication, recombination and repair significantly increased. KEGG function annotation and enrichment analysis were performed based on DEGs with different treatments, indicating that the MAPK signaling pathway, the mRNA surveillance pathway and RNA transport were regulated significantly. Taken together, this study explores the effect of Cd stress on the growth physiology and gene level of ryegrass, thus highlighting significance of preventing and controlling heavy metal pollution in the future.

Funder

Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference46 articles.

1. Plant science: The key to preventing slow cadmium poisoning;Clemens;Trends Plant Sci.,2013

2. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system;Shahid;Rev. Environ. Contam. Toxicol.,2016

3. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review;Mahar;Ecotoxicol. Environ. Saf.,2016

4. Phytoremediation of heavy metals: Concepts and applications;Ali;Chemosphere,2013

5. Meta-analysis of the copper, zinc, and cadmium absorption capacities of aquatic plants in heavy metal-polluted water;Li;Int. J. Environ. Res. Public Health,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3