Abstract
With the increase in penetration of photovoltaics (PV) into the power system, the correct prediction of return on investment requires accurate prediction of decrease in power output over time. Degradation rates and corresponding degraded energy estimation must be known in order to predict power delivery accurately. Solar radiation plays a key role in long-term solar energy predictions. A combination of auto-encoder and long short-term memory (AE-LSTM) based deep learning approach is adopted for long-term solar radiation forecasting. First, the auto-encoder (AE) is trained for the feature extraction, and then fine-tuning with long short-term memory (LSTM) is done to get the final prediction. The input data consist of clear sky global horizontal irradiance (GHI) and historical solar radiation. After forecasting the solar radiation for three years, the corresponding degradation rate (DR) influenced energy potentials of an a-Si PV system is estimated. The estimated energy is useful economically for planning and installation of energy systems like microgrids, etc. The method of solar radiation forecasting and DR influenced energy estimation is compared with the traditional methods to show the efficiency of the proposed method.
Funder
Korea Electric Power Corporation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献