Abstract
Sodium dodecyl sulfate (SDS) is a well-known surfactant, which can accelerate methane hydrate formation. In this work, methane hydrate formation kinetics were studied in the presence of SDS using a rocking cell apparatus in both temperature-ramping and isothermal modes. Ramping and isothermal experiments together suggest that SDS concentration plays a vital role in the formation kinetics of methane hydrate, both in terms of induction time and of final gas uptake. There is a trade-off between growth rate and gas uptake for the optimum SDS concentration, such that an increase in SDS concentration decreases the induction time but also decreases the gas storage capacity for a given volume. The experiments also confirm the potential use of the rocking cell for investigating hydrate promoters. It allows multiple systems to run in parallel at similar experimental temperature and pressure conditions, thus shortening the total experimentation time. Understanding methane hydrate formation and storage using SDS can facilitate large-scale applications such as natural gas storage and transportation.
Funder
The Danish Council for Independent Research
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献