Glucosinolate Profiling and Expression Analysis of Glucosinolate Biosynthesis Genes Differentiate White Mold Resistant and Susceptible Cabbage Lines

Author:

Abuyusuf Md.,Robin Arif,Lee Ji-Hee,Jung Hee-Jeong,Kim Hoy-Taek,Park Jong-In,Nou Ill-Sup

Abstract

Sclerotinia stem rot (white mold), caused by the fungus Sclerotinia sclerotiorum, is a serious disease of Brassica crops worldwide. Despite considerable progress in investigating plant defense mechanisms against this pathogen, which have revealed the involvement of glucosinolates, the host–pathogen interaction between cabbage (Brassica oleracea) and S. sclerotiorum has not been fully explored. Here, we investigated glucosinolate profiles and the expression of glucosinolate biosynthesis genes in white-mold-resistant (R) and -susceptible (S) lines of cabbage after infection with S. sclerotiorum. The simultaneous rise in the levels of the aliphatic glucosinate glucoiberverin (GIV) and the indolic glucosinate glucobrassicin (GBS) was linked to white mold resistance in cabbage. Principal component analysis showed close association between fungal treatment and cabbage GIV and GBS contents. The correlation analysis showed significant positive associations between GIV content and expression of the glucosinolate biosynthesis genes ST5b-Bol026202 and ST5c-Bol030757, and between GBS content and the expression of the glucosinolate biosynthesis genes ST5a-Bol026200 and ST5a-Bol039395. Our results revealed that S. sclerotiorum infection of cabbage induces the expression of glucosinolate biosynthesis genes, altering the content of individual glucosinolates. This relationship between the expression of glucosinolate biosynthesis genes and accumulation of the corresponding glucosinolates and resistance to white mold extends the molecular understanding of glucosinolate-negotiated defense against S. sclerotiorum in cabbage.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3